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Abstract

A match is a recursive zero-sum game with three possible outcomes: player
1 wins, player 2 wins or there is a draw. Play proceeds by steps from state to
state. In each state players play a “point game” and move to the next state ac-
cording to transition probabilities jointly determined by their actions. We focus
on quasi-binary matches which are those whose point games also have three pos-
sible outcomes: player 1 scores the point, player 2 scores the point, or the point
is drawn (something that happens with probability less than 1) in which case
the point game is repeated. We show that a value of a draw can be attached to
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1 Introduction

A match is a recursive zero-sum game with three possible outcomes: player 1 wins,

player 2 wins or the game never ends. Play proceeds by steps from state to state. In

each state players play a “point” and move to the next state according to transition

probabilities jointly determined by their actions. Examples of matches include tennis,

penalty shootouts and, you will forgive the repetition, chess matches. In a chess match

two players play a sequence of chess games until some prespecified score is reached.

For instance, the Alekhine–Capablanca match played in 1927 took the format known as

first-to-6 wins, according to which the winner is the first player to win six games. Some

matches are finite horizon games. As an example we have a best-of-seven playoff series.

Indeed, this match will necessarily end in at most seven stages. A penalty shootout,

on the other hand, is an infinite horizon game. It will never end if, for instance, every

penalty kick is scored. Similarly, a first-to-6-wins chess match is also an infinite horizon

game.1 Matches can further be classified into binary and non-binary games. A penalty

shootout is an example of the former and a chess match of the latter. The reason is

that while each penalty kick has only two outcomes, either the goal is scored or it is not

scored, a chess game may also end in a draw.

Matches are recursive game as defined by Everett [2]. Recursive games are a special

case of stochastic games, which were earlier introduced by Shapley [8]. Matches have

been the object of several empirical studies. For instance, both Walker and Wooders [10],

using data on tennis, and Palacios-Huerta [6] using data on penalty kicks, show that

players’ behavior is broadly consistent with the minimax hypothesis. On the other hand,

Apesteguia and Palacios-Huerta [1] observe a first-kicker advantage in penalty shootouts

and Gonzalez-Dı́az and Palacios-Huerta [4] find a similar anomaly in chess matches. This

last paper also offers a brief theoretical analysis of a particular finite chess match.

Walker, Wooders and Amir [11] analyzed binary games and showed that under a

1In fact, the 1984 Karpov-Kasparov match lasted five months and was aborted after 48 games when
the partial score was 5-3. Coincidentally, the longest penalty shootout so far also had 48 kicks.
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certain monotonicity condition, minimax behavior in each of the point games constitutes

an equilibrium of the whole match. Namely, by maximizing the lowest probability of his

scoring each point, each player is best responding to the other player’s also maximizing

the lowest probability of his scoring each point. This result implies that as long as

the monotonicity condition holds, binary games have stationary equilibria that dictate

behavior that depends only on the current point game and therefore is independent of

the structure of the match.

Strictly speaking however, Walker, Wooders and Amir’s [11] result is proved for

matches in which never-ending play is defined to be the worst outcome for both players,

a feature that renders their matches non-zero sum games. In this paper we extend their

analysis to a different class of games, which we call quasi-binary matches, and obtain

an arguably stronger result. Quasi-binary matches differ from the ones considered in

Walker, Wooders and Amir [11] in two aspects. First, they are zero-sum games: the

match payoff function awards 1 to the winner, -1 to the loser, and in the event of

an infinite play 0 to both players. And second, they are matches whose point games

have three possible outcomes: player 1 scores the point, player 2 scores the point, or

(something that happens with probability less than 1) the point is drawn, in which case

it is repeated. Like in binary games, from any state play may move to one of at most

two states. Unlike binary games, play may also stay in the current state for some time.

In this paper we show that a value of a draw can be attached to each state so that

quasi-binary matches always have an easily-computed stationary equilibrium in which

players’ strategies prescribe minimax play in the point games induced by these values.

Moreover, the value of a draw attached to a given state depends only on the point played

in it and thus equilibrium behavior at that state is independent of the structure of the

match.

Before we describe these equilibria, notice that since in a quasi-binary game the

probability of staying in the current state, say k, is less than one, players will eventually

move to one of two different states. Label them w(k) and ℓ(k). If they move to w(k) we
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say that player 1 wins the point and if they move to state ℓ(k) we say that player 1 loses

the point. Finally, if they stay in the current state we say that the point is drawn. Note

that since there are two different states to which players can move from state k, there

are two different ways to select a labeling. Even so, once a labeling is chosen, we can

define a simple zero-sum matrix game as follows. First we assign a value ek to the draw

in the current state and then we define the payoffs to player 1 as his expected earnings

when winning the point is worth 1, losing the point is worth 0, and a draw is worth ek.

As mentioned above, there are two ways of labeling the states to which the players

can move from each state. In this paper we show that there is a labeling w(k), ℓ(k) of

the successors of each state k, and a value ek of the draw in the respective point games

such that minimax play in the above zero-sum matrix games constitutes an equilibrium

of the match. We also show that if the game satisfies a mild monotonicity condition,

every stationary equilibrium of the match prescribes minimax play in these zero-sum

games.

To illustrate the main result, consider the following simple match. Two players play

a sequence of 2× 2 “simplified chess” games. Each game may end in a victory for either

player or in a draw. The winner earns one point and the match ends as soon as the

score difference is either 2 or -2. Formally, there are three non-absorbing states, 1, 0,

and -1, corresponding to each partial score, and two absorbing states, 2 and -2. Let’s

adopt the labeling according to which when player 1 wins the chess game played at state

k, for k = 1, 0,−1, play moves to state k + 1, and when he loses it there is a transition

to k − 1. When the partial score is 0 player 1 plays with the white pieces and the chess

game is governed by the following matrix of probabilities:

PW =





(2
3
, 1
3
, 0) ( 8

27
, 1
3
, 10
27
)

(0, 1
2
, 1
2
) (2

3
, 1
3
, 0)



 .

Each entry displays the probabilities of player 1 winning, drawing or losing the point
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when the corresponding actions are chosen.2 For instance, when player 1 chooses his first

action and player 2 chooses his second action, player 1 wins the point with probability

8/27, loses the point with probability 10/27, and there is a draw with probability 1/3.

As soon as one of the players wins the point and the partial score becomes 1 or -1, they

go on to play a new chess game in which player 1 has the black pieces. Correspondingly,

this new game is governed by the following matrix of probabilities:

PB =





(0, 1
3
, 2
3
) (1

2
, 1
2
, 0)

(10
27
, 1
3
, 8
27
) (0, 1

3
, 2
3
)



 .

Here too, the entries are the probabilities that player 1 wins, draws or loses the point

when the corresponding action pair is chosen. Players continue playing this game until

one of them wins the point. If the player who has the score advantage wins the point

the match ends. If the player with the score disadvantage wins the point, the partial

score becomes 0 again and they go back to playing a chess game where player 1 has the

white pieces.

Although matrices PW and PB represent the strategic interaction involved in each of

the chess games, they themselves are not games. In order to transform them into games

we need to specify the proportion of the point at stake a draw represents. Consider

for instance the matrix PW . If a draw is worth ε ∈ [0, 1] of a point, then by taking

the expected value of the point earned by player 1, PW can be transformed into the

following matrix game:

PW (ε) =





2
3
+ 1

3
ε 8

27
+ 1

3
ε

1
2
ε 2

3
+ 1

3
ε



 .

Routine calculations show that the value of this matrix is 24+16ε−3ε2

56−9ε
, and that in par-

ticular when ε = 2/3 the value of the matrix is also 2/3. Namely, 2/3 is a fixed point

2We are aware that in real chess, the outcome of a pair of strategies is deterministic. We hope chess
enthusiasts will forgive this distortion.
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of the function that assigns to each ε ∈ [0, 1] the value of PW (ε). We call this fixed

point the value of the draw when player 1 plays with the white pieces, and we call the

corresponding matrix PW (2/3) the associated point game. One can also check that the

equilibrium strategies of this point game are ((3/5, 2/5), (2/5, 3/5)).

Similarly, one can check that when the draw in the chess game governed by PB is

worth ε of a point, the associated matrix game is

PB(ε) =





2
3
ε 1

2
+ 1

2
ε

10
27

+ 1
3
ε 1

3
ε





and that the value of this game when a draw is worth 1/3 of a point is also 1/3. In other

words, the value of a draw when player 1 plays with black is 1/3, and the associated

point game is PB(1/3). Furthermore, equilibrium strategies of the associated point game

PB(1/3) are ((2/5, 3/5), (3/5, 2/5)).

Our main result will imply that choosing the mixed action (3/5, 2/5) when playing

with the white pieces, and choosing the mixed action (2/5, 3/5) when playing with the

black pieces is an optimal strategy for each of the players in the match. Furthermore,

since this match satisfies a simple monotonicity condition, our second result shows that

the corresponding pair of strategies is the only stationary equilibrium of the match.

Notice that this equilibrium dictates that in each point game players behave in a way

that depends only on the chess game played. In particular, since when the partial score

is 1 or -1 the chess games played are the same, equilibrium behavior is also the same.

Also notice that we have been able to compute the equilibrium actions in each state

using only the matrix of probabilities that is relevant to that state.

This paper generalizes the foregoing example for all quasi-binary matches. Specif-

ically, denoting P k the matrix of probabilities that govern the outcomes of the point

played at state k, we can find a value of the draw ek and build a matrix P k(ek) which is

obtained from P k by first interpreting one of the outcomes as winning the point and the

other as losing it, and by evaluating a draw as worth ek of a point. Our main result says
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that for any quasi-binary game, choosing minimax mixtures of the point game P k(ek) in

state k constitutes a stationary equilibrium. Furthermore, when a simple monotonicity

condition is satisfied, all the stationary equilibria of the match are of this type.

The paper is organized as follows. Section 2 introduces the basic definitions. Section 3

defines the concept of the value of a draw and shows that it satisfies some interesting

properties. In Section 4 we formulate and prove the main result.

2 Matches

2.1 Basic definitions

Consider the following zero-sum stochastic game, which we call a match. There are

two players, 1 and 2, and a set of states S = {0, 1, . . . , K + 1}. States 0 and K + 1 are

absorbing states which if reached the match ends. In state k ∈ S, the actions available to

players 1 and 2 are labeled by the integers 1, . . . , Ik and 1, . . . , Jk, respectively. Without

loss of generality we assume that for all k, Ik = I and Jk = J and denote the action sets

of player 1 and 2 by I and J , respectively. Players are endowed with action sets in states

0 and K+1 only for notational convenience. A mixed action for player 1 is a probability

distribution over I and a mixed action for player 2 is a probability distribution over J .

We denote the sets of mixed actions of player 1 and 2 by ∆I and ∆J , respectively. For

any I × J matrix game A, val(A) denotes its value. A mixed action x ∈ ∆I is said

to be optimal for player 1 in A if it guarantees that he gets a payoff of at least val(A).

Similarly, a mixed action y ∈ ∆J is said to be optimal for player 2 in A if it guarantees

that player 1 gets a payoff of at most val(A). Recall that for A = (aij|i ∈ I, j ∈ J ) and

B = (bij|i ∈ I, j ∈ J ), |val(A)− val(B)| ≤ maxij |aij − bij| and that if bij = αaij + β for

some α > 0 and β ∈ IR and for all i ∈ I and j ∈ J , then val(B) = α val(A) + β.

For each state k ∈ S there is a matrix

P k = (pkij|i ∈ I, j ∈ J )
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of probability distributions on the set of states S. Namely, for each pair of actions i, j

of player 1 and 2, respectively, pkij = (pkk
′

ij )k′∈S where

pkk
′

ij ≥ 0 and
∑

k′∈S

pkk
′

ij = 1.

Matrices P 0 and PK+1 are introduced for notational convenience; since states 0 and

K + 1 are absorbing, p00ij = pK+1,K+1
ij = 1 for all i ∈ I and j ∈ J . We will henceforth

refer to P k as the point matrix at k.

The interpretation of the match is as follows. In state k = 1, . . . , K, after player 1

chooses an action i ∈ I and player 2 chooses an action j ∈ J they move to state k′ ∈ S

with probability pkk
′

ij . If state 0 is reached the match ends and player 1 wins. If state

K +1 is reached, the match ends and player 2 wins. If neither state 0 nor K +1 is ever

reached, the match is drawn.

In order to define the match we need to specify the initial state and, for each player,

his set of available strategies and his payoff function. But first we need some definitions.

The set of histories of length t = 0, 1, 2, . . . is denoted by Ht = S × (I × J × S)t. A

typical history of length t is ht = (s0, (i1, j1, s1), . . . , (it, jt, st)) ∈ Ht. Here, the initial

state is s0 ∈ S and at stage τ = 1, . . . t, players chose actions iτ and jτ as a result of

which the state becomes sτ . By the end of ht, the state is st. The set of all finite histories

is denoted by H = ∪t≥0Ht.

A player’s strategy is a specification of a mixed action for each stage conditional on

the current state and on the history of play up to that stage. Formally, a strategy for

player 1 is a map χ : H → ∆I that prescribes a mixed action χ(ht) = (χ1(ht), . . . , χI(ht))

to be used by player 1 after every finite history ht. Similarly, a strategy for player 2 is a

map ψ : H → ∆J that prescribes a mixed action ψ(ht) = (ψ1(ht), . . . , ψJ(ht)) to be used

by player 2 after every finite history ht. Stationary strategies are strategies that depend

only on the current state. Thus, a stationary strategy for player 1 can be represented by

a vector ~x = (x0, . . . , xK+1), where for each k ∈ S, xk = (xk1, . . . , x
k
I ) is a mixed action
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for player 1. Similarly, a stationary strategy for player 2 is a vector ~y = (y0, . . . , yK+1)

of mixed actions for player 2. We denote the sets of strategies for players 1 and 2 by

X and Y respectively, and their subsets of stationary strategies by ~X and ~Y . Given an

initial state k ∈ S, a pair of strategies χ and ψ induces a probability distribution on the

histories of length t as follows. For histories of length 0, h0 ∈ H0,

πχ,ψk (h0) =







1 if h0 = k

0 otherwise.

And for histories of length t = 1, 2, . . . this probability distribution is defined inductively

as follows. For ht = ht−1 ◦ (it, jt, st),

πχ,ψk (ht) = πχ,ψk (ht−1)χit(ht−1)ψjt(ht−1) p
st−1st
itjt

.

Consequently, given an initial state k and a pair of strategies χ and ψ the probability

that at stage t = 1, 2, . . ., the current state is k′ is given by

µkk
′

t (χ, ψ) =
∑

{ht∈Ht:st=k′}

πχ,ψk (ht). (1)

Since states 0 and K + 1 are absorbing, the probability sequences {µk0t (χ, ψ)}∞t=1 and

{µkK+1
t (χ, ψ)}∞t=1 are non-decreasing and bounded. Therefore they have limits, which are

denoted µk0∞(χ, ψ) and µkK+1
∞ (χ, ψ), respectively. Each of these limits is the probability

that player 1 and player 2, respectively, eventually wins the match conditional on the

initial state being k when they choose the strategy pair (χ, ψ).

As mentioned earlier, when state 0 is reached, player 1 wins and gets a payoff of 1

from player 2 and if state K + 1 is reached, player 1 loses and pays 1 to player 2. It is

not necessarily true, however, that any pair of strategies leads to one of these two states

with probability 1. In the case that there is no winner we specify the players’ payoffs to

be 0.

We can now define the match Γk which starts at state k ∈ S. Formally, Γk is the
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zero-sum game where the sets of strategies of player 1 and 2 are X and Y , respectively,

and player 1’s payoff function uk : X × Y → [−1, 1] is defined by uk(χ, ψ) = µk0∞(χ, ψ)−

µkK+1
∞ (χ, ψ). Player 2’s payoff function is consequently −uk(χ, ψ). Note that Γ0 and

ΓK+1 are degenerate games with u0(χ, ψ) ≡ 1 and uK+1(χ, ψ) ≡ −1. We denote by Γ

the collection of matches {Γk : k = 1, . . . , K} and remark that Γ is fully determined by

the set of states S and by the set of point matrices (P k)Kk=1.

The number vk is said to be the value of Γk if supχ∈X infψ∈Y u
k(χ, ψ) = vk =

infψ∈Y supχ∈X u
k(χ, ψ). If vk is the value of Γk for k = 1, . . . , K we say that (v1, . . . , vK)

is the value of Γ. If χε ∈ X is such that uk(χε, ψ) ≥ vk − ε for ε > 0 and for all

ψ ∈ Y , we say that χε is ε-optimal for player 1 in Γk. Similarly, if ψε ∈ Y is such that

uk(χ, ψε) ≤ vk + ε for ε > 0 and for all χ ∈ X, we say that ψε is ε-optimal for player 2

in Γk. A strategy pair (χ∗, ψ∗) ∈ X × Y is an equilibrium of Γk if

uk(χ, ψ∗) ≤ uk(χ∗, ψ∗) ≤ uk(χ∗, ψ) for all χ ∈ X,ψ ∈ Y.

In this case, uk(χ∗, ψ∗) is clearly the value of Γk. We say that (χ∗, ψ∗) ∈ X × Y is an

equilibrium of Γ if it is an equilibrium of Γk for all k ∈ {1, . . . , K}.

As mentioned before, Γ is a recursive game. Everett [2] shows that recursive games

have a value, and Mertens and Neyman [5] prove more generally that when streams of

payoffs are undiscounted all stochastic games with finite state and action spaces have

a value. Further results in recursive games can be found in Flesch, Thuijsman and

Vrieze [3] and in Vieille [9].

The point matrix P k represents the point played at state k. Note that P k is not a

game since its entries are probability distributions on S. However, it can be transformed

into a zero-sum game by assigning values to the states and averaging them according to

the entries of P k. More specifically, for any α = (α1, . . . , αK) ∈ IRK we can define the

matrix game Ak(α) as follows:
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Ak(α) =
(

pk0ij +
K
∑

k′=1

pkk
′

ij α
k′ − pkK+1

ij | i ∈ I, j ∈ J
)

.

As a direct application of Theorems 2, 3 and 6 of Everett [2] we have the following

observation which plays a fundamental role in our analysis.

Observation 1 For k = 1, . . . , K, Γk has a value vk and this value satisfies vk =

val(Ak(v1, . . . , vk)). Furthermore, for every ε > 0 there exist stationary strategies ~xε ∈ ~X

and ~yε ∈ ~Y that are ε-optimal for players 1 and 2, respectively, in Γk, k = 1, . . . , K.

Although Γk has a value, it may not have an equilibrium. See Everett’s [2] Example

1, reproduced in Section 4.1 below.

2.2 Stationary strategies

Given an initial state k ∈ S, a pair of stationary strategies induce a Markov chain that

allows us to compute the transition probabilities defined in (1) recursively. Specifically, a

pair of stationary strategies (~x, ~y) induces a Markov matrix M(~x, ~y) = (µss
′

(~x, ~y)|s, s′ ∈

S) whose transition probabilities are given by the probability of moving to state s′

conditional on the current state being s:

µss
′

(~x, ~y) =

∑

{ht:st=s}
π~x,~yk (ht)

∑I
i=1

∑J
j=1 x

s
iy
s
jp
ss′

ij
∑

{ht:st=s}
π~x,~yk (ht)

=
I

∑

i=1

J
∑

j=1

xsiy
s
jp
ss′

ij . (2)

As is well known, this probability does not depend on the initial state k.

Note that µkk
′

1 (~x, ~y) = µkk
′

(~x, ~y) and that the probabilities µkk
′

t (~x, ~y) defined in (1)

satisfy the recursive relation

µkk
′

t (~x, ~y) =
∑

s∈S

µkst−1(~x, ~y) µ
sk′(~x, ~y) k ∈ S.
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In other words, they are none other than the entries of the t-th power of M(~x, ~y).

3 Quasi-binary matches and the value of a draw

In this paper we restrict attention to a particular class of simple matches which we now

define. Let Γ be a match characterized by the point matrices P k = (pkij|i ∈ I; j ∈ J ),

for k = 1, . . . , K. For each state k, define the set of its immediate successors, or simply

successors, to be

S(k) = {k′ ∈ S : pkk
′

ij > 0, for some (i, j) ∈ I × J }.

This set contains the states that can possibly be reached from state k in a single step.

Successors of k that are not k itself are called proper successors. The set of k’s proper

successors is denoted by Ŝ(k).

Definition 1 A match is quasi-binary if for each state k = 1, . . . , K the number of its

proper successors is exactly two, and pkkij < 1 for all i ∈ I, j ∈ J .

Although our results are stated for the class of quasi-binary matches, they still hold

for the larger class that includes those matches where some state k has a single proper

successor, even if pkkij = 1 for some i ∈ I, j ∈ J . In this case, the proof treats k as its

second proper successor. (We will provide more details in footnote 3 later). For the sake

of brevity, however, we decided to drop these matches from the class of quasi-binary

games.

In a quasi-binary match each state k = 1, . . . , K has only two proper successors. We

denote them by w(k) and ℓ(k). If the game moves to state w(k) we say that player 1

won the point played at k. If the game moves to state ℓ(k) we say that player 1 lost the

point played at k. And if the game stays in state k we say that the point played at k

ended in a draw. We denote by (w, ℓ) the labeling (w(k), ℓ(k))Kk=1.
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We can take advantage of the labeling (w, ℓ) to transform the point matrix P k into

a matrix game as follows. We first award player 1 a payoff of 1 if he wins the point, a

payoff of 0 if he loses the point and a payoff of ε if the point is drawn, and then replace

the distribution pkij in the ijth entry by the corresponding expected payoff p
kw(k)
ij + pkkij ε.

Formally, for each ε ∈ [0, 1] we define the matrix game P k(ε) by letting its ijth entry be

p
kw(k)
ij + pkkij ε, namely the expected value of the point played at k when players choose

the action pair (i, j) and a draw is valued at ε.3 Note that P k(ε) depends on the labeling

choice w(k), ℓ(k). Consequently, all the ancillary definitions in this section depend on

this choice.

The question we want to address is the following: Is there a labeling (w, ℓ) and an

associated value of the draw ek for each k ∈ {1, . . . , K} so that two stationary strategies

~x∗ = (x0, . . . , xK+1) and ~y∗ = (y0, . . . , yK+1) constitute an equilibrium of Γ if for all

k ∈ {1, . . . , K}, (xk, yk) is an equilibrium of P k(ek)? Our main theorem will give a

positive answer to this question. Meanwhile, the next proposition singles out, given a

labeling, a candidate for a suitable value of the draw.

Proposition 1 Let Γ be a quasi-binary match and let (w, ℓ) be a labeling. For k =

1, . . . , K, let fk : [0, 1] → [0, 1] be the function defined by fk(ε) = val(P k(ε)). Then fk

has a unique fixed point.

Proof : Since the entries of P k(ε) are in [0, 1] and are non-decreasing in ε, fk is a

nondecreasing function that maps the interval [0, 1] into itself. Therefore, by Tarski’s

fixed-point theorem fk has a fixed point, which we denote ek.

3 If a state k had only one proper successor we could treat k as the missing proper successor and

denote these successors by w(k) and ℓ(k). The matrix P k(ε) would then be defined as {p
kw(k)
ij |i ∈ I, j ∈

J } and with this amended definition, the ensuing analysis would remain valid.
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Assume that ε̂k is another fixed point of fk. Then,

|ε̂k − ek| = |fk(ε̂k)− fk(ek)|

= |val(P k(ε̂k))− val(P k(ek))|

≤ max
ij

|(p
kw(k)
ij + pkkij ε̂

k)− (p
kw(k)
ij + pkkij e

k)|

= |ε̂k − ek|max
ij

pkkij

< |ε̂k − ek|

where we have used the assumption that pkkij < 1 for all i ∈ I and all j ∈ J . But since

the above inequality is absurd, we conclude that ek is the only fixed point of fk. �

We denote by ek the unique fixed point identified in the above proposition and call

it the value of the draw in state k (with respect to (w, ℓ)). We also call P k(ek) the point

game played at k. Notice that in order to compute the value of the draw in state k only

the point matrix P k is needed. In particular, no prior knowledge of the value of Γ is

required. The next proposition, however, shows that when vw(k) > vℓ(k), the value of the

draw at k bears an interesting relationship with the values of the successors of k.

Proposition 2 Let Γ be a quasi-binary match, let (v1, . . . , vK) be its value and extend

it so that v0 = 1 and vK+1 = 0. Let (w, ℓ) be a labeling and let k be a state such that

vw(k) > vℓ(k). Also, let ek be the unique fixed point identified in Proposition 1. Then,

ek =
vk − vℓ(k)

vw(k) − vℓ(k)
.

Proof : Denote ǫk = (vk − vℓ(k))/(vw(k) − vℓ(k)). By Proposition 1, the value of the

draw in state k is the unique fixed point of the function fk : [0, 1] → [0, 1] given by

fk(ε) = val(P k(ε)). Therefore, it is enough to show that ǫk is a fixed point of fk. Recall

that by Observation 1 vk = val(Ak(v1, . . . , vk)) where Ak(v) = (p
kw(k)
ij vw(k) + pkkij v

k +
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p
kℓ(k)
ij vℓ(k)|i ∈ I, j ∈ J ). But note that Ak(v) and P k(ǫk) are strategically equivalent.

Indeed, for i ∈ I and j ∈ J the ijth entry of the matrix A(v) can be written

Akij(v) = (p
kw(k)
ij + pkkij ǫ

k)(vw(k) − vℓ(k)) + vℓ(k)

where vw(k) − vℓ(k) > 0. Therefore,

val(Ak(v)) = val(P k(ǫk))(vw(k) − vℓ(k)) + vℓ(k)

and consequently,

val(P k(ǫk)) =
val(Ak(v))− vℓ(k)

vw(k) − vℓ(k)

=
vk − vℓ(k)

vw(k) − vℓ(k)
= ǫk.

�

The foregoing proposition justifies calling ek the value of the draw in state k with

respect to (w, ℓ). To see this, notice that from state k, players will eventually move to

one of its proper successors, w(k) or ℓ(k), in which case player 1 will get (assuming ε-

optimal play) a payoff close to vw(k), or vℓ(k), respectively. Therefore, since vw(k) > vℓ(k),

player 1 has a guaranteed expected payoff close to vℓ(k) and hence what is really at stake

in state k is close to vw(k)−vℓ(k). When the point is drawn, the players remain in state k,

in which case player 1 gets an expected payoff close to vk. Namely, he nets a proportion

vk−vℓ(k)

vw(k)−vℓ(k)
of what is at stake. The above proposition shows that ek, the unique fixed

point identified in Proposition 1, is precisely this proportion – hence its interpretation

as the value of a draw.

In the next definition we identify those stationary strategies which at every state

dictate mixed actions that are optimal in the respective point games. According to these

strategies, behavior in each state k depends only on the matrix P k and, in particular, is
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independent of the structure of the match in all the other states.

Definition 2 Let Γ be a quasi-binary match, (w, ℓ) be a labeling, and for k = 1, . . . , K

let ek be the value of the draw in k and P k(ek) the point game played at k with respect to

(w, ℓ). Also, let ~x = (xk)K+1
k=0 ∈ ~X and ~y = (yk)K+1

k=0 ∈ ~Y be two stationary strategies, one

for each player. We say that (~x, ~y) is a minimax-stationary strategy pair with respect

to (w, ℓ) if for all k = 1, . . . , K, (xk, yk) is an equilibrium of P k(ek).

It follows from Proposition 1 that if (~x, ~y) is a pair of minimax-stationary strategies

then xk guarantees that player 1 gets a payoff of at least ek in P k(ek) and yk guarantees

that player 1 gets at most ek in P k(ek). Notice that minimax-stationary strategies always

exist.

The following observation states that when players behave according to a minimax-

stationary strategy pair, the probability of player 1 eventually winning the point game

played at k is precisely the value of the draw in state k.

Observation 2 Let Γ be a quasi-binary match, (w, ℓ) be a labeling and let (~x, ~y) be a

minimax-stationary strategy pair w.r.t (w, ℓ). Then the value of the draw at k is the

corresponding probability of eventually leaving k and transiting to w(k). Formally, for

k = 1, . . . , K

ek =
µkw(k)(~x, ~y)

1− µkk(~x, ~y)
.

Proof : Since ~x = (x0, . . . , xK+1) and ~y = (y0, . . . , yK+1) constitute a pair of minimax-

stationary strategies, for k = 1, . . . , K, (xk, yk) is an equilibrium of P k(ek), and ek =

val(P k(ek)),

ek =
∑

i∈I

∑

j∈J

xki y
k
j (p

kw(k)
ij + pkkij e

k)

which, using equation (2) can be written as ek = µkw(k)(~x, ~y)+µkk(~x, ~y)ek. Since pkkij < 1

for all i ∈ I and all j ∈ J , we have that µkk(~x, ~y) < 1. Therefore, solving for ek we
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obtain the result. �

4 Minimax-stationary strategies and equilibrium

We have seen that given a labeling (w, ℓ) we can associate to each state k a value

of the draw ek and a point game P k(ek). Additionally, the point games P k(ek) induce

stationary strategies in Γ in a natural way: they prescribe that players choose at k mixed

actions that are optimal in P k(ek). In this section we will find a particular labeling all

of whose induced minimax-stationary strategies constitute an equilibrium of the match.

Specifically, we will show the following.

Theorem 1 Let Γ be a quasi-binary match. There exists a labeling such that any pair

of minimax-stationary strategies with respect to it constitutes an equilibrium of Γ.

We will prove the theorem in two stages. We first identify in Section 4.2 a natural

way of labeling the successors of each state, and we later show, in Section 4.3, that this

labeling is the one mentioned in the theorem. Before that we discuss the result.

4.1 Discussion

a) Interpretation of the result. The labeling w(k), ℓ(k) identified in the theorem, along

with the associated value of a draw ek, allows the following interpretation of the possible

transitions from state k. Moving to w(k) is interpreted as player 1 winning the point

played at k, moving to ℓ(k) as player 2 winning the point, and drawing as if the point

was shared in the proportions (ek, 1− ek). Theorem 1 identifies an equilibrium in which

both players adopts this interpretation and aim at maximizing their respective expected

shares of the point at stake.

17



b) Computation of the value of the match. Theorem 1 allows us to compute the value

v of Γ in a relatively easy manner. To see this, for each of the 2K possible label-

ings l, let (~xl, ~yl) be a minimax-stationary strategy pair with respect to it, and let

(us(~xl, ~yl))s∈S be the corresponding payoffs. (Recall that minimax-stationary strategies

can be computed without knowing v.) In order to identify v it is enough to com-

pare these payoffs as follows. Take any two distinct payoff vectors (us(~xl, ~yl))s∈S and

(us(~xm, ~ym))s∈S corresponding to labels l and m, and assume that for some state k,

uk(~xl, ~yl) > uk(~xm, ~ym). Next calculate the payoff in Γk when player 1 uses ~xl and player

2 uses ~ym. If uk(~xl, ~ym) > uk(~xm, ~ym) then we conclude that ~ym does not guarantee

that player 1 gets a payoff less or equal uk(~xm, ~ym), which means that uk(~xm, ~ym) is not

the value of Γk. If uk(~xl, ~ym) < uk(~xl, ~yl) then we conclude that ~xl does not guarantee

that player 1 gets a payoff of at least uk(~xl, ~yl), which means that uk(~xl, ~yl) is not the

value of Γk. Since at least one of the above inequalities must hold, we conclude that

at least one of the above vectors of payoffs is not the value of Γ. Since Theorem 1

guarantees that there is one labeling l∗ such that (us(~xl∗ , ~yl∗))s∈S is the value of Γ, after

at most 2K − 1 comparisons we identify the value of the match. In fact, one needs

only to consider payoffs (us(~xl, ~yl))s∈S that are consistent with their labelings, namely

uw(s)(~xl, ~yl) ≥ uℓ(s)(~xl, ~yl) for s = 1, . . . , K.

c) Computation of the equilibrium minimax-stationary strategies. Theorem 1 says not

only that every quasi-binary match Γ has an equilibrium but also that it has an equilib-

rium which is relatively easy to compute. To do this, compute the value of Γ along the

lines described in item a) and then use it to build the labeling mentioned in Theorem 1

which, as will be seen, can be done once v is known. The equilibrium strategies are the

minimax-stationary strategies associated with this labeling.

d) Necessity of the restriction to quasi-binary matches. For the purposes of Theorem 1,

the condition on quasi-binary matches that pkkij < 1 for all i ∈ I and j ∈ J cannot be

dispensed with. Example 1 in Everett [2], summarized in the following matrix, illustrates
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this point.

P 1 :





s1 1

1 −1





In this match, there is only one non-absorbing state, denoted by s1, and if players choose

the first row and the first column, they remain in s1 with probability 1. The payoffs 1

and -1 represent the transition to the absorbing states. As Everett shows, the value of

Γ is 1 but player 1 cannot guarantee this payoff. Specifically, while player 1 can obtain

a payoff as close to 1 as he wishes by choosing the mixed action (1− ε, ε) at every stage,

he cannot guarantee a payoff of 1 since, for every one of his strategies, player 2 has a

reply that yields a payoff less than 1.

Neither can the restriction to no more than two proper successors per state be relaxed,

as the following two-state version of Everett’s example demonstrates.

P 1 :





s2 1

1 −1



 P 2 :





s1 1

1 −1





This match is obtained from the previous one by cloning the only non-absorbing state

and amending the point matrices so that when players choose the first row and the first

column, there is a transition from one state to its clone. Therefore, this match does not

have an equilibrium. Note, however, that although the probability of remaining in the

current state is 0 for all action pairs, both states have three proper successors.

4.2 The natural labeling

Before we prove the theorem we will construct an algorithm that labels the proper

successors of the states. We will later show that any pair of minimax-stationary strategies

with respect to this labeling is an equilibrium of Γ.

The idea of the labeling is as follows. Consider a state s and let s1 and s2 be its proper

successors. If these successors have different values, then the one with the highest value

will be labeled w(s) and the one with the lowest value will be labeled ℓ(s). However,
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when they have the same value the choice of labels is not obvious and must be made

carefully. There are three cases to consider. If v(s1) = v(s2) > 0, the state denoted by

w(s) will be a proper successor from which player 1 can guarantee a positive probability

of winning the match by following a path of states, not including s, with non-decreasing

values. If v(s1) = v(s2) < 0, the state denoted by ℓ(s) will be a proper successor from

which player 2 can guarantee a positive probability of winning the match by following a

path of states, not including s, with non-increasing values. Finally, if v(s1) = v(s2) = 0,

any labeling of s’s successors will do. We next define a partition of the set of states that

will allow us to identify the above-described w(s) and ℓ(s).

Let (v1, . . . , vK) be the value of Γ and extend it so that v0 = 1 and vK+1 = −1. Let

S+ = {k ∈ S : vk > 0} and S− = {k ∈ S : vk < 0}. Define a binary relation → on S+

as follows: for k ∈ S+, k → k′ if k′ is a proper successor of k with vk
′

≥ vk and if for all

j ∈ J there exists i ∈ I such that pkk
′

ij > 0. In other words, k → k′ if k′ has a value at

least as large as the value of k and player 2 cannot prevent a transition from k to k′.

Similarly, define a binary relation
−
−→ on S− as follows: for any k ∈ S−, k

−
−→ k′ if k′

is a proper successor of k with vk
′

≤ vk and if for all i ∈ I there exists j ∈ J such that

pkk
′

ij > 0.

We now iteratively classify the elements of S+ into disjoint subsets. Let S+
0 = {0}.

Also let S+
1 = {s ∈ S+ \ S+

0 : s → 0} be the set of states with positive value from

which player 1 can guarantee a positive probability of winning the match in one step.

In general, define for n = 1, 2, . . .

S+
n+1 = {s ∈ S+ \ ∪nν=0S

+
ν : either there exists s′ ∈ S+

n with s→ s′ or Ŝ(s) ⊆ ∪nν=0S
+
ν }.

The set S+
n+1 contains the states with positive value not yet classified from which player

1 can guarantee a positive probability of a transition to a state with higher or equal

value that has already been classified.
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Similarly, we iteratively classify the states in S− into disjoint subsets as follows:

S−
m+1 = {s ∈ S− \ ∪mν=0S

−
ν : either there exists s′ ∈ S−

m with s
−
−→ s′ or Ŝ(s) ⊆ ∪mν=0S

−
ν }.

Since the number of states in S+ is finite, there must be an N such that S+
N 6= ∅

and S+
N+ν = ∅ for all ν = 1, 2, . . .. Similarly, there must be an M such that S−

M 6= ∅

and S−
M+ν = ∅ for all ν = 1, 2, . . .. The following claim, whose proof can be found in

the Appendix, states that the subsets defined above form a partition of S+ and of S−,

respectively.

Claim 1 The collection {S+
0 , . . . , S

+
N} forms a partition of S+, and {S−

0 , . . . , S
−
M} forms

a partition of S−.

We can now proceed to label the proper successors of the states in {1, . . . , K}. Con-

sider first a state s ∈ S+. By the previous claim, s ∈ S+
n+1 for some n. Let s1, s2 be its

two proper successors and assume without loss of generality that vs1 ≥ vs2 . Then we

denote

w(s) =



















s1 if vs1 > vs2

s1 if vs1 = vs2 and s1 ∈ ∪nν=0S
+
ν

s2 if vs1 = vs2 and s1 /∈ ∪nν=0S
+
ν

(3)

and denote by ℓ(s) the other successor.

Simlarly, let s ∈ S−. By the previous claim, s ∈ S−
m+1 for some m. Let s1, s2 be its

two proper successors and assume without loss of generality that vs1 ≥ vs2 . Then we

denote

ℓ(s) =



















s2 if vs1 > vs2

s2 if vs1 = vs2 and s2 ∈ ∪mν=0S
−
ν

s1 if vs1 = vs2 and s2 /∈ ∪mν=0S
−
ν

and denote by w(s) the other successor.

Finally, let vs = 0 and denote by s1, s2 its two proper successors where vs1 ≥ vs2 .
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Then, we label w(s) = s1 and ℓ(s) = s2.

We call any labeling built according to the above procedure a natural labeling.4

Notice that this labeling satisfies vw(s) ≥ vℓ(s) for all s ∈ 1, . . . , K. The following

example illustrates the construction of a natural labeling.

Example 1 Consider the following match. The set of states is S = {s0, s1, s2, s3, s4}.

States s0 and s4 are absorbing. If the former is reached, player 1 wins the match and

if the latter is reached player 2 wins the match. The payoffs for player 1 in these two

absorbing states are 1 and -1, respectively. The match is characterized by the following

point matrices where instead of s0 and s4 we write the respective payoffs 1 and -1.

P 1 :









b

1 s2

1/2 1/2

b

1 s2

δ 1−δ









P 2 :





s3

s1



 P 3 :









b

1 −1

p 1−p









In state s1 only player 2 has a non-trivial choice, in state s2 only player 1 has a non-trivial

choice, and in state s3 there is a single action pair.

Case 1: δ = 0 and 1/2 < p < 1. In this case, player 1 can guarantee a payoff of at

least 2p − 1 > 0 in all Γk by choosing his first action in state 2. Similarly, player 2

can guarantee that player 1 gets no more than 2p − 1 by choosing his second action

in state 1. Therefore the value of Γ is given by v1 = v2 = v3 = 2p − 1 > 0. Hence,

S+ = {s0, s1, s2, s3} and S− = {s4}. Since the successors of s1 are s0 and s2 and since

v0 = 1 > 2p − 1 = v2, according to the natural labeling we have that w(s1) = s0 and

ℓ(s1) = s2. Similarly, w(s3) = s0 and ℓ(s3) = s4. In order to complete the natural

labeling, we build the partition of S+ mentioned in Claim 1. By definition, S+
0 = {s0}.

Although, s0 is a proper successor of both s1 and s3, only s3 ∈ S+
1 . Indeed, that

s3 ∈ S+
1 is clear because s3 → s0. That s1 /∈ S+

1 follows from the fact that since δ = 0,

player 2 can prevent a transition to s0 by choosing his second action in state s1. Hence,

S+
1 = {s3}. Since s2 → s3, we have that S+

2 = {s2}. Finally, since s1 → s2, we have

4There may be more than one natural labeling. For our analysis, any of them will do.
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that S+
3 = {s1}. Therefore, by applying (3) we obtain that w(s2) = s3 and ℓ(s2) = s1.

Case 2: 0 < δ < 1/2 and 1/2 < p < 1. In this case player 1 can guarantee that in Γ1 and

in Γ2 he wins the match by choosing his second action in state s2. Consequently, the

value of the match is given by v1 = v2 = 1 and v3 = 2p− 1 > 0. As before, w(s3) = s0

and ℓ(s3) = s4. Since the successors of s2 are states s1 and s3 and since v1 > v3, we have

that w(s2) = s1 and ℓ(s2) = s3. Since δ > 0, player 2 can no longer prevent a transition

from state s1 to state s0, and consequently S+
0 = {s0}, S

+
1 = {s1, s3}, and S

+
2 = {s2}.

Applying (3) we obtain that the natural labeling is w(s1) = s0 and ℓ(s1) = s2. Notice

the labels of state s2 are different depending on whether δ = 0 or δ > 0 which shows

that a small change in the entries of the point matrix in one state can affect the natural

labeling in other states.

Case 3: δ = 0 and 0 < p < 1/2. In this case the value of Γ is given by v1 = v2 = 0,

and v3 = 2p − 1 < 0. As can be checked, the resulting natural labeling is given by

w(s1) = s0, w(s2) = s1, and w(s3) = s0, (and ℓ(s1) = s2, ℓ(s2) = s3, and ℓ(s3) = s4).

We now illustrate Theorem 1 by computing the equilibrium minimax-stationary

strategies of the matches described in the above example.

Example 1 (cont.)

Case 1: δ = 0 and 1/2 < p < 1. We have already shown that the natural labeling in

this case is given by w(s1) = s0, w(s2) = s3, and w(s3) = s0, (and ℓ(s1) = s2, ℓ(s2) = s1,

and ℓ(s3) = s4). Since Γ is not just a quasi-binary match but also a binary game, the

corresponding matrices P k(ε) with respect to this labeling are constant and are given

by

P 1(ε) :
(

1/2 0
)

P 2(ε) :





1

0





P 3(ε) :
(

p
)

It can be checked that the associated minimax-stationary strategies dictate that player

1 chooses his first action in state s2, and player 2 chooses his second action in state s1.

Consistent with Theorem 1 they constitute an equilibrium of Γ.
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Case 2: 0 < δ < 1/2 and 1/2 < p < 1. It can be checked that in this case the

matrices P k(ε) become

P 1(ε) :
(

1/2 δ
)

P 2(ε) :





0

1





P 3(ε) :
(

p
)

Therefore, the associated minimax-stationary strategies prescribe that player 1 chooses

his second action in state s2 and player 2 his first action in state s1.

Case 3: δ = 0 and 0 < p < 1/2. In this case the associated minimax-stationary strategies

prescribe that player 1 chooses his second action in state s2 and player 2 chooses his

second action is state s1. Notice that these strategies lead to a never-ending cycle

involving states s1 and s2, and consequently to a tie in the match.

Theorem 1 states that any pair of minimax-stationary strategies constitutes an equi-

librium of Γ. Notice that these strategies dictate behavior in state k that depends on the

point matrices in states different from k only to the extent that they affect the natural

labeling. Therefore, any modification in the structure of the match that involves neither

a change in the point matrix P k nor in the natural labeling, will leave the equilibrium

behavior in state k unaffected. However, in some non-generic matches even a small

change in the point matrix of a state different from k may drastically alter the equilib-

rium behavior in state k. To see this compare cases 1 and 2 in Example 1. We have

seen that whether δ is positive or not affects the natural labeling, and as a consequence,

affects the associated minimax-stationary strategies as well. Indeed, when δ = 0 the

minimax-stationary strategy of player 1 dictates that he chooses his first action while

when δ > 0 it prescribes his second action. Theorem 1 shows that this kind of interstate

influence is possible only if the changes in the point games affect the natural labeling.

4.3 Proof of Theorem 1

We now show that any minimax-stationary strategy pair with respect to a natural la-

beling constitutes an equilibrium of Γ.
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Fix a natural labeling and let (~x∗, ~y∗) be a minimax-stationary strategy pair with

respect to it. In order to show that it is an equilibrium of Γk we will show that ~x∗

guarantees a payoff of at least vk for player 1 in Γk. The fact that ~y∗ guarantees that

player 1 gets a payoff of at most vk in Γk is analogous and is left to the reader. Finding a

strategy ψ∗ ∈ Y that minimizes uk(~x∗, ·) is a Markov decision problem with the expected

total reward criterion. Consequently, it has a stationary solution (see Puterman [7],

Theorem 7.1.9). Therefore, it is enough to show that

uk(~x∗, ~y) ≥ vk k = 1, . . . , K

for all stationary strategies ~y of player 2. Let ~y = (y0, . . . , yK+1) be a stationary strategy

for player 2. The fact that x∗k guarantees ek in the point game P k(ek) for k = 1, . . . , K

implies that
∑

i∈I

∑

j∈J

x∗ki y
k
j (p

kw(k)
ij + pkkij e

k) ≥ ek k = 1, . . . , K.

Let M(~x∗, ~y) = (µkk
′

(~x∗, ~y)|k, k′ ∈ S) be the Markov transition matrix induced by the

strategy pair (~x∗, ~y). Using equation (2), the above inequality can be written as

µkw(k)(~x∗, ~y) + µkk(~x∗, ~y) ek ≥ ek k = 1, . . . , K. (4)

It follows that

µkw(k)(~x∗, ~y) vw(k) + µkk(~x∗, ~y) vk + µkℓ(k)(~x∗, ~y) vℓ(k) ≥ vk k = 1, . . . , K. (5)

To see this, let k ∈ {1, . . . , K}. The natural labeling ensures that vw(k) ≥ vℓ(k). If

vw(k) = vℓ(k), inequality (5) is trivially satisfied since in this case, by Observation 1,

vw(k) = vk = vℓ(k). And if vw(k) > vℓ(k), inequality (5) is obtained by multiplying (4) by

vw(k) − vℓ(k), adding vℓ(k) to both sides and applying Proposition 2. Taking into account
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that k has no successors except for w(k), k and ℓ(k), we can rewrite inequality (5) as

µk0(~x∗, ~y) +
K
∑

s=1

µks(~x∗, ~y) vs − µkK+1(~x∗, ~y) ≥ vk k = 1, . . . , K.

Denoting v = (v0, v1, . . . , vK+1)′, we can rewrite the above inequality in matrix notation

as

M(~x∗, ~y) · v ≥ v.

Iterating, we obtain thatM t(~x∗, ~y)·v ≥ v for all t. In other words, for each k = 1, . . . , K,

we have that

µk0t (~x∗, ~y) +
K
∑

s=1

µkst (~x∗, ~y) vs − µkK+1
t (~x∗, ~y) ≥ vk for all t.

Since uk(~x∗, ~y) = µk0∞(~x∗, ~y) − µkK+1
∞ (~x∗, ~y), in order to show that uk(~x∗, ~y) ≥ vk it is

enough to show that lim supt→∞

∑K
s=1 µ

ks
t (~x∗, ~y) vs ≤ 0. And to prove this it is enough

to show that for all states s with vs > 0, except for s = 0, limt→∞ µkst (~x∗, ~y) = 0. The

Markov matrix M(~x∗, ~y) induces a partition of S into recurrent classes and possibly a

transient set.5 We will end the proof by showing that all states s with positive value,

except for state 0, are transient states and thus limt→∞ µkst (~x∗, ~y) = 0.

Let C be a recurrent class different from {0}. We will show that all states in C have

non-positive value. Let s ∈ C and assume by contradiction that vs > 0. By Claim 1,

there exists a unique n(s) such that s ∈ S+
n(s). Without loss of generality assume that

vs ≥ vs
′

for all s′ ∈ C and that n(s) ≤ n(s′) for all s′ such that vs = vs
′

. Consider now

state w(s). There are two cases.

Case 1: w(s) ∈ C. In this case, by the choice of s we have that vw(s) = vs. We will show

that this case is impossible since it would imply that n(w(s)) < n(s) contradicting our

choice of s.

5A set C is a recurrent class if
∑

k′∈C µkk′

(~x∗, ~y) = 1 for all k ∈ C and no proper subset of C has
this property. A state is transient if there is a positive probability of leaving and never returning.
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Case 1.1: vw(s) = vs = vℓ(s). Since s ∈ S+
n(s) and since Ŝ(s) ∩ ∪

n(s)−1
ν=0 S+

ν 6= ∅, by (3)

we have that w(s) ∈ ∪n(s)−1
ν=0 S+

ν , namely n(w(s)) < n(s).

Case 1.2 : vw(s) = vs > vℓ(s). In this case s 6→ ℓ(s). Then since s ∈ S+
n(s), we must

have either that w(s) ∈ ∪
n(s)−1
ν=0 S+

ν and s → w(s), or that w(s), ℓ(s) ∈ ∪
n(s)−1
ν=0 S+

ν . In

either case, w(s) ∈ ∪
n(s)−1
ν=0 S+

ν , namely n(w(s)) < n(s).

Case 2: w(s) /∈ C. In this case ℓ(s) ∈ C. We will show that this case is also impossible

since it would imply that vℓ(s) = vs and that n(ℓ(s)) < n(s), contradicting our choice

of s. The fact that w(s) /∈ C means that µsw(s)(~x∗, ~y) = 0. By equation (4), and since

µss(~x∗, ~y) < 1, we obtain that es = 0. Namely, player 2 can prevent a transition from

s to w(s). That is, we must have that s 6→ w(s). Then, since s ∈ S+
n(s), by a similar

argument as the one used in Case 1.2, we have that ℓ(s) ∈ ∪
n(s)−1
ν=0 S+

ν . To see that

vℓ(s) = vs, note that by Observation 1, vw(s) ≥ vs ≥ vℓ(s) and if vw(s) > vℓ(s), since

es = 0, by Proposition 2, vℓ(s) = vs.

Since both cases are impossible, we conclude that all the recurrent states have non-

positive value – hence the transience of the states with positive value. �

4.4 A partial converse

It is not necessarily so that every stationary equilibrium of a quasi-binary match is a

minimax-stationary strategy pair with respect to some labeling. To see this, let us go

back to the match in Example 1 with δ = 0 and 1/2 < p < 1, and recall that the value of

this match is v1 = v2 = v3 = 2p−1. Consider the following pair of stationary strategies.

Player 1 chooses his two actions with equal probabilities in state s2 and player 2 chooses

his second action in state s1. It can be checked that, independent of the initial state,

player 1’s strategy guarantees that he gets a payoff of at least 2p− 1 and that player 2’s

strategy guarantees that player 1 gets a payoff of at most 2p − 1. Consequently, these

strategies constitute an equilibrium of Γ. However, player 1’s strategy is not a minimax-

stationary strategy with respect to any labeling since no matter how the successors of s2
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are labeled, the corresponding minimax-stationary strategy will never prescribe mixing

between his actions in s2.

We now present a partial converse of Theorem 1. It says that when for every state

both of its proper successors have different values, any stationary strategy equilibrium

of Γ is a minimax-stationary strategy pair with respect to a natural labeling.

Let Γ be a quasi-binary match and let (v1, . . . , vK) be its value. Extend it so that

v0 = 1 and vK+1 = −1 and let v = (v0, . . . , vK+1). Note that if the proper successors of

a given state k have different values, then vw(k) > vℓ(k) for any natural labeling (w, ℓ).

We say that Γ satisfies monotonicity if for every state both its proper successors have

different values. Notice that if Γ satisfies monotonicity, there is a unique natural labeling.

Theorem 2 Let Γ be a quasi-binary match that satisfies monotonicity. A pair of sta-

tionary strategies is an equilibrium of Γ only if it is a pair of minimax-stationary strate-

gies with respect to the natural labeling.

Proof : Let (~x∗, ~y∗) be a stationary equilibrium of Γ and let (w, ℓ) be a natural labeling.

Let k ∈ 1, . . . , K. Since vw(k) > vℓ(k), by Proposition 2

ek =
vk − vℓ(k)

vw(k) − vℓ(k)
. (6)

We need to show that x∗k guarantees that player 1 gets a payoff of at least ek in P k(ek)

and that y∗k guarantees that player 1 gets a payoff of at most ek in P k(ek).

Since (~x∗, ~y∗) is an equilibrium of Γk,

vk = uk(~x∗, ~y∗) ≥ uk(χ, ~y∗) for all χ ∈ X. (7)

Since ~y∗ is a stationary strategy, the problem of finding a strategy for player 1 that max-

imizes uk(·, ~y∗) is a Markov decision problem (with the expected total-reward criterion).

Equation (7) says that ~x∗ is one of its solutions and that it attains vk. Therefore (see
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Puterman [7], Chapter 7),

v = max
~x∈ ~X

M(~x, ~y∗)v (8)

where M(~x, ~y∗) is the Markov matrix induced by the stationary strategy pair (~x, ~y∗).

This means that, using equation (2), for every k = 1, . . . , K,

vk = max
~x∈ ~X

K+1
∑

k′=0

∑

i∈I

∑

j∈J

xki y
∗k
j p

kk′

ij v
k′

= max
~x∈ ~X

∑

i∈I

∑

j∈J

xki y
∗k
j

K+1
∑

k′=0

pkk
′

ij v
k′

= max
~x∈ ~X

∑

i∈I

∑

j∈J

xki y
∗k
j (p

kw(k)
ij vw(k) + pkkij v

k + p
kℓ(k)
ij vℓ(k)).

Subtracting vℓ(k) from both sides and then dividing the result by vw(k)−vℓ(k) (which can

be done since this difference is positive) using equation (6) we find that

ek = max
~x∈ ~X

∑

i∈I

∑

j∈J

xki y
∗k
j (p

kw(k)
ij + pkkij e

k).

This shows that y∗k guarantees that player 1 gets at most ek in P k(ek).

A similar argument shows that x∗k guarantees that player 1 gets at least ek in

P k(ek). �

Appendix

Proof of Claim 1: We prove only the first statement. The proof of the other one is

analogous and is left to the reader. By definition of the sets in {S+
0 , . . . , S

+
N}, it is clear

that they are pairwise disjoint. In order to show that their union is S+ it is enough to

show that if S+ \ ∪nν=0S
+
ν 6= ∅ then S+

n+1 6= ∅.

Assume by contradiction that S+
n+1 = ∅ even though S+ \ ∪nν=0S

+
ν 6= ∅. Then, for
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any s ∈ S+ \ ∪nν=0S
+
ν , since Ŝ(s) 6⊆ ∪nν=0S

+
ν , at most one of its successors is in ∪nν=0S

+
ν .

And if s′ is such a successor we have that s 6→ s′. That is, either vs
′

< vs or player 2

can guarantee that the next state is not s′, namely there exists j ∈ J s.t. pss
′

ij = 0 for

all i ∈ I. Let k ∈ S+ \ ∪nν=0S
+
ν such that vk ≥ vk

′

for all k′ ∈ S+ \ ∪nν=0S
+
ν . Let ~y be

a stationary strategy for player 2 that guarantees that from any s ∈ S+ \ ∪nν=0S
+
ν , the

next state s′ is not in ∪nν=0S
+
ν unless vs

′

< vs. By the forgoing discussion, such strategy

exists. Let ε > 0 be such that ε < vk and 2ε < min{|vs − vs
′

| : vs 6= vs
′

, s, s′ ∈ S}).

Also, let ~yε be an ε-optimal strategy for player 2 and consider the following strategy for

player 2 in Γk.

ψ(ht) =







~y(ht) if for all τ ≤ t, sτ ∈ S+ \ ∪nν=0S
+
ν

~yε(ht) if for some τ ≤ t, sτ /∈ S+ \ ∪nν=0S
+
ν .

Strategy ψ makes sure that after any history ht = (s0, (i1, j1, s1), . . . , (it, jt, st)), as long

as all the states sτ , τ ≤ t have been in S+ \ ∪nν=0S
+
ν , the next state st+1 will not be in

∪nν=0S
+
ν , unless v

st+1 < vst in which case it may be in ∪nν=0S
+
ν . The only way to ever

move to a state in ∪nν=0S
+
ν , and in particular, to state 0, is to make a transition from

some state s ∈ S+ \∪nν=0S
+
ν to a state s′ /∈ S+ \∪nν=0S

+
ν with vs

′

< vs ≤ vk. But as soon

as the system moves from a state in S+ \ ∪nν=0S
+
ν to a state not there, player 2 switches

to the ε-optimal strategy ~yε.

Let χ be any stationary strategy for player 1. Since the only way to ever reach state

0 is to go through a state s /∈ S+ \ ∪nν=0S
+
ν with vs < vk, we have that

uk(χ, ψ) ≤ max{0, vs + ε : s with vs < vk}

≤ max{0, vk − 2ε+ ε : s with vs < vk}

= vk − ε

where the second and third inequalities follow from our choice of ε. This inequality,

since it holds for every χ ∈ X, contradicts the fact that vk is the value of Γk.
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