
Motivation and contribution
Model

Empirical application

Multivariate quantile impulse response functions

Gabriel Montes-Rojas
CONICET-UBA-UNLP

IIEP, 05/07/2018

Montes-Rojas Multivariate quantile impulse response functions



Motivation and contribution
Model

Empirical application

An important way to summarize the dynamics of macroeconomic data is to
make use of a vector autoregressive (VAR) model. The VAR approach provides
statistical tools for data description, forecasting, and structural inference to
study rich dynamics in multivariate time-series models.

Nevertheless, the use of a constant-coefficient model as representative of
time-series models may not be adequate. These models cannot appropriately
account for the presence of asymmetric and heterogeneous dynamic responses.

Of particular interest is the asymmetric business cycle dynamics of economic
variables, as the occurrence of asymmetries may call into question the usefulness
of models with time invariant structures as means of modeling such series.

Alternatives: nonlinear models, regimes, structural breaks, multivariate volatility
models...

...or quantile regression.
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Quantile regression (QR) is a statistical method for estimating models of
conditional quantile functions. This method offers a systematic strategy for
examining how covariates influence the location, scale, and shape of the entire
response distribution, thereby exposing a variety of heterogeneity in response
dynamics.

Koenker and Xiao (2006) QAR estimator applies QR models in time-series.
Galvao, Montes-Rojas, and Park (2013) interpret the QR time-series framework
as modeling the business cycle, where high (low) conditional realizations of a
distributed lag model correspond to high (low) quantiles.
Ex. AR(1) model:

E [Yt |Yt−1] = α+ βYt−1

vs.

QYt [τ |Yt−1] = α(τ) + β(τ)Yt−1, τ ∈ (0, 1)

where QYt [τ |Yt−1] is the conditional quantile of Yt |Yt−1 (i.e., F−1
Yt

(τ |Yt−1) for

continuous cdf).

Forecasting expected value vs. the full distribution (through quantiles).
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It is not possible to reproduce all “desirable properties” of scalar quantile
regression in higher dimensions, so various proposals focus on achieving different
sets of properties.

Koenker (2005): “search for a satisfactory notion of multivariate quantiles has
become something of a quest for the statistical holy grail in recent years.”

Consider a univariate random variable Y with domain in Y ⊆ R and distribution
function FY (y) := P(Y ≤ y). Then the τ th-quantile for τ ∈ (0, 1) is defined as
QY (τ) := inf {y ∈ Y : τ ≤ FY (y)}. Note that if FY (.) is continuous then
QY (τ) = F−1(τ).

However, for m-variate random variable Y with domain in Y ⊆ Rm,
inf {y ∈ Y : τ ≤ FY (y)} is not unique.
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Directional quantiles

Hallin, Paindaveine, and Šiman (2010) propose to analyze the distributional and
quantile features of multivariate response variables using the directional
quantiles notion of Chaudhuri (1996), Koltchinskii (1997), Wei (2008) and
others. Further work by Paindaveine and Šiman (2011, 2012) and Fraiman and
Pateiro-López (2012). Multivariate quantile analysis should be endowed with a
magnitude and a direction.

Carlier, Chernozhukov, and Galichon (2016) and Chernozhukov, Galichon,
Hallin, and Henry (2015) propose a vector quantile regression (linear) model that
produces a monotone map, in the sense of being a gradient of convex function.

Montes-Rojas (2017) builds on directional quantiles and consider a model in
which the orthonormal basis is fixed, i.e. a set of directions orthogonal to each
other that span the domain of the dependent variable.

The reduced form directional quantiles are defined as a fixed point of a system
of directional quantiles.

The solution maps X × (0, 1)m 7→ Y.
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My contribution

Use directional QR to construct VARQ model for multivariate VAR.

Construct and discuss forecasting procedures for the multivariate system.

Introduce the idea of quantile paths, i.e., forecasting for different quantile
configurations.

Construct quantile impulse response functions (QIRFs).

Empirical application: Evaluate the effect of monetary policy (shock in interest
rate) on output and inflation (U.S.).

Montes-Rojas Multivariate quantile impulse response functions



Motivation and contribution
Model

Empirical application

VARQ
Forecasting
Impulse response functions

The model

Consider a m−dimensional process Yt = (Y1t , ...,Ymt)
′ with domain in

Y ⊆ Rm. (endogeneous variables)

Consider a k−dimensional process Xt with domain in X ⊆ Rk .
(explanatory/control variables)

Of particular interest is the case of the covariates generated by the σ-field
generated by {Ys , s ≤ t} and all other information available at time t,
denoted by Ft . For that case the model becomes a vector autoregressive
quantile (VARQ) model.

For an autoregressive model of p−order then
Xt−1 = [Y ′t−1,Y

′
t−2, ...,Y

′
t−p]′ and k = m × p.
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Quantiles are analyzed in terms of a quantile magnitude and a direction.

Define τ = (τ1, τ2, ..., τm) ∈ (0, 1)m be a collection of quantile indexes.

τ factorizes into τ ≡ τv where τ = ‖τ‖ ∈ (0, 1) (magnitude) and
v ∈ Vm−1 ≡ {v ∈ Rm : ‖v‖ = 1} (direction).

τ represents a scalar quantile index;

v is a m − 1-directional vector;
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Directional quantiles

Let the vector τ be an index on the open unit ball in Rm (deprived of the
origin) T m ≡ {τ ∈ Rm : 0 < ‖τ‖ < 1}. Our interest lies in defining and
estimating

QYt |Xt (τ |Xt) = B(τ )Xt + A(τ ),

where B(τ ) is a m × k matrix of coefficients, A(τ ) is a m × 1 vector of
coefficients. Let B(τ ) ≡ [B1(τ )′,B2(τ )′, ...,Bm(τ )′]′ where Bj(τ ),
j = 1, 2, ...,m, are the corresponding 1× k vector of coefficients of the
jth element in Y .

Q is a map X × T m 7→ Y and corresponds to our proposed definition of
multivariate quantiles, which we will be defined as vector directional
quantiles (VDQ).
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VARQ

Define the univariate QR models for j = 1, . . . ,m

qj (τj |xt−1, y−jt) := QYjt
(τj |xt−1, y−jt) = cj (τj )

>y−jt + bj (τj )
>xt−1 + aj (τj )

[Note: This corresponds to a particular direction in the space Y.]

In order to construct the VARQ model define
QYt (τ |xt−1) := {q1(τ |xt−1), . . . , qm(τ |xt−1)}> from the system of equations
below:


q1(τ |xt−1) := c1(τ1)>q−1(τ |xt−1) + b1(τ1)>xt−1 + a1(τ1)

... :=
...

qm(τ |xt−1) := cm(τm)>q−m(τ |xt−1) + bm(τm)>xt−1 + am(τm),

where {cj (τj )}mj=1 and {bj (τj )}mj=1 are vectors of dimensions (m − 1)× 1 and

k × 1, respectively, and {aj (τj )}mj=1 are scalars.

All the m-directions together correspond to an orthonormal basis. The solution
is a fixed point or a simultaneous solution of all m equations.
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VARQ

Consider the following matrices based on the coefficients above:
C(τ ) := {C1(τ1), . . . ,Cm(τm)}> is an m ×m matrix in which the {Cj (τj )}mj=1
m × 1-dimensional vectors contain all the elements of the m − 1 vector of
coefficients {cj (τj )}mj=1 augmented with a 0 in the corresponding jth

component, b(τ ) = {b1(τ1), . . . , bm(τm)}> is an m × k matrix, and
a(τ ) = {a1(τ1), . . . , am(τm)}> is an m × 1 vector.

Then, the VARQ model is defined as

QYt (τ |xt−1) = {Im − C(τ )}−1 {b(τ )xt−1 + a(τ )} := B(τ )xt−1 + A(τ ),

where Im is the m-dimensional identity matrix, B(τ ) := {Im − C(τ )}−1 b(τ )
and A(τ ) := {Im − C(τ )}−1 a(τ ).
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VARQ

Define the lag polynomials (B(τ , L)) such that

B(τ )Xt = B(τ , L)Yt =

p∑
k=1

B·k (τ )LkYt

and

QYt (τ |xt−1 = Xt−1) = B(τ , L)yt + A(τ ),

where yt denotes the values of Yt to be used in the equation.
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Bivariate model with one exogenous covariate

Consider the following motivating example of a bivariate model. Suppose
a simple bivariate model with two response variables, Y1 and Y2, and an
exogenous variable X .

Y1t = γ1Y2t + β1Xt + α1 + ε1t ,

Y2t = γ2Y1t + β2Xt + α2 + ε2t ,

assuming that Xt⊥(ε1t , ε2t), Yjt⊥ε(3−j)t , j = 1, 2, and ε1t⊥ε2t . Let
Y = (Y1,Y2)> and var(εj) = σ2

j , j = 1, 2.

We know that (γ1, γ2, β1, β2, α1, α2) cannot be identified unless additional
assumptions are made as in structural VAR models.
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Bivariate model with one exogenous covariate

The conditional expectations (E [Y1|x ],E [Y2|x ]), i.e. the reduced form
model, can be identified and consistently estimated by using the model

E [Y1t |Xt = x ] =
β1 + γ1β2

1− γ1γ2
x +

α1 + γ1α2

1− γ1γ2
= β̃1x + α̃1,

E [Y2t |Xt = x ] =
β2 + γ2β1

1− γ1γ2
x +

α2 + γ2α1

1− γ1γ2
= β̃2x + α̃2,

where α̃j ≡
αj+γjα3−j

1−γjγ3−j
, β̃j ≡

βj+γjβ3−j

1−γjγ3−j
, j = 1, 2 stands for the reduced form

parameters.
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Bivariate model with one exogenous covariate

Note that the reduced form can be found by a system of equations using

E [Y1t |Xt = x ] = γ1E [Y2t |Xt = x ] + β1x + α1 + E [ε1t |Xt = x ],

E [Y2t |Xt = x ] = γ2E [Y1t |Xt = x ] + β1x + α2 + E [ε2t |Xt = x ],

where E [ε3−j |Xt = x ] = 0, j = 1, 2. In other words, the reduced form can
be obtained by evaluating at the corresponding conditional expectations
(where we are conditioning on X ) only.
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Bivariate model with one exogenous covariate

Consider now the conditional form model

E [Y1t |Y2t ,Xt ] = c1Y2t + b1Xt + a1,

E [Y2t |Y1t ,Xt ] = c2Y1t + b2Xt + a2,

and note that by adding an irrelevant endogenous variable to the model
above produces another model for which in general aj 6= αj , bj 6= βj ,
cj 6= γj , j = 1, 2.

The conditional model should be interpreted then as a biased structural
system, provided that (α1, α2, β1, β2) may not be recovered.
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Bivariate model with one exogenous covariate

Now consider the following system of equations:

y1 ≡ E [Y1t |Y2t = y2,Xt = x ] = c1E [Y2t |Y1t = y1,Xt = x ] + b1x + a1,

y2 ≡ E [Y2t |Y1t = y1,Xt = x ] = c2E [Y1t |Y2t = y2,Xt = x ] + b2x + a2,

and its solution

y1 =
b1 + c1b2

1− c1c2
x +

a1 + c1a2

1− c1c2
= b̃1x + ã1,

y2 =
b2 + c2b1

1− c1c2
x +

a2 + c2a1

1− c1c2
= b̃2x + ã2,

where ãj =
aj+cj a3−j

1−cj c3−j
and b̃j =

bj+cjb3−j

1−cj c3−j
, for j = 1, 2.
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Bivariate model with one exogenous covariate

Proposition

Conditional and reduced form coincide. That is for j = 1, 2,

ãj =
aj + cja3−j

1− cjc3−j
=
αj + γjα3−j

1− γjγ3−j
= α̃j ,

b̃j =
bj + cjb3−j

1− cjc3−j
=
βj + γjβ3−j

1− γjγ3−j
= β̃j .
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Bivariate model with one exogenous covariate

Can this be generalized to quantiles?

Q1(τ1, y2, x) ≡ QY1|Y2,X (τ1|y2, x) = c1(τ1)y2 + b1(τ1)x + a1(τ1)

Q2(τ2, y1, x) ≡ QY2|Y1,X (τ2|y1, x) = c2(τ2)y1 + b2(τ2)x + a2(τ2).

Each equation will be seen as a particular directional quantile, as in
Hallin, Paindaveine, and Šiman (2010). As such, they provide useful
information about the joint distribution of (Y1,Y2). However, the
parameters (cj , bj , aj), j = 1, 2 do not have a structural interpretation.
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Bivariate model with one exogenous covariate

Set now the system of equations to solve for Q1(τ1, τ2, x),Q2(τ1, τ2, x),
defined as

Q1(τ1, τ2, x) ≡ Q1 (τ1,Q2(τ2,Q1(τ1, τ2, x), x), x)

= c1(τ1)Q2(τ1, τ2, x) + b1(τ1)x + a1(τ1)

Q2(τ1, τ2, x) ≡ Q2 (τ2,Q1(τ1,Q2(τ1, τ2, x), x), x)

= c2(τ2)Q1(τ1, τ2, x) + b2(τ2)x + a2(τ2)

Then the definition of VARQ is thus given by (Q1(τ1, τ2, x),Q2(τ1, τ2, x)):

Q1(τ1, τ2, x) =
b1(τ1) + c1(τ1)b2(τ2)

1− c1(τ1)c2(τ2)
x +

a1(τ1) + c1(τ1)a2(τ2)

1− c1(τ1)c2(τ2)

≡ b1(τ1, τ2)x + a1(τ1, τ2)

Q2(τ1, τ2, x) =
b2(τ2) + c2(τ2)b1(τ1)

1− c1(τ1)c2(τ2)
x +

a2(τ2) + c2(τ2)a1(τ1)

1− c1(τ1)c2(τ2)

≡ b2(τ1, τ2)x + a2(τ1, τ2)
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Forecasting
One-period ahead forecasting

The VARQ model implicitly defines a one-period ahead forecasting method for
the entire distribution of Yt+1 given all the information available at t.

QYt+1
(τ |xt) = QYt+1

(τ |{yt , yt−1, ..., yt−p}) = B(τ , L)yt+1 + A(τ ).

Define thus Q1(τ |xt) = QYt+1
(τ |xt) as the one-period ahead forecast given all

the information available at time t.
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Forecasting
Two-periods ahead forecasting - quantile paths

Consider now the two-periods ahead forecast, i.e. t + 2, at quantiles τ2.

Note that this would depend on the response at t + 1 and the implicit quantile
τ1. In turn then this would depend on both quantiles, (τ2, τ1). This is defined
as a two-periods quantile path, where the collection of indexes correspond to a
potential path of the system of endogenous variables. Then

Q2{(τ2, τ1)|xt} := Q[τ2|{Q1(τ1|xt), yt , . . . , yt−p+1}].
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Forecasting
h-periods ahead forecasting - quantile paths

In general the h-periods ahead forecast can be written as a function of the
forecast of the previous quantiles

Qh{(τh, . . . , τ1)|xt} = B(τh, L)Qk{(τk , . . . , τ1)|xt}+ A(τh),

where Qk (.|.) = yt−k if Lk (t + h) ≤ t and (τk , . . . , τ1), k = 1, . . . , h − 1 is the
k-periods quantile path.

Then we can write

Qh{(τh, . . . , τ1)|xt} = {Πh
k=1B(τk )}xt +

h−1∑
k=1

{Πh
j=k+1B(τj )}A(τk ) + A(τh),
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Forecasting
Quantile paths

This framework allows for forecasting different quantile paths.

A canonical case is fixing τi = (0.5, . . . , 0.5) for all i = 1, . . . , h, which
corresponds to evaluating future values on the conditional median values of the
endogenous variables. In general this procedure delivers similar estimates as the
mean-based VAR forecasts.

This procedure can be generalized for any τi = (τ, . . . , τ) for all i = 1, . . . , h. In
this case high values of τ correspond to the persistent occurrence of the τ
conditional quantile in all endogenous variables.

Moreover, we do not necessarily need the same τ for all endogenous variables
equations. As an example in the empirical application we consider the 0.1 and
0.9 quantiles of output, while we keep the median for inflation and interest rate.
As such, we are constructing a potential quantile path where output is either at
the low or high end of the business cycle. See Galvao, Montes-Rojas, and Park
(2013) for an interpretation of QR time-series models in terms of the business
cycle.
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Forecasting
Averaging intermediate steps

Note however that if we are interested in the h-periods ahead forecast, this may
not depend on the implicit quantile used for the k-step forecast, k < h. As such
we could integrate out τk by using τk ∼ IID U(0, 1)m for k = 1, 2, ..., h − 1.
Define B̄ := EτB(τ ) and Ā := EτA(τ ). (Note that B̄ and Ā are not
necessarily equal to the mean-based reduced form VAR coefficients.)

Then,

Qh(τ |xt) = B(τ )B̄h−1xt + B(τ )

{
h−1∑
k=1

B̄k Ā

}
+ A(τ ).

As h→∞, the long run prediction converges to

lim
h→∞

Qh(τ |xt) = B(τ )(I − B̄)−1Ā + A(τ ).
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Impulse response functions

Our interest lies in evaluating the propagation of shocks of the m-variate
process. (Identification of shocks comes from elsewhere.)

We then compute the impulse response function by comparing the multivariate
quantiles at xδt := (yt + δ, yt−1, ..., yt−p) with those at xt = (yt , yt−1, ..., yt−p).

Define the τ -quantile impulse response function (QIRF) at t + 1 for a shock at
time t, δ ∈ Y ⊆ Rm, as

Qirf1(τ , δ|xt) = Q1(τ |xδt )− Q1(τ |xt) = B·1(τ )δ,

where Q1 is the one-period ahead forecast.
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Impulse response functions

Consider now the IRF two-periods ahead, i.e. t + 2, at quantiles τ2. Note that
this would depend on the response at t + 1 and the implicit quantile τ1. In turn
then this would depend on both quantiles, (τ2, τ1), defined as a quantile path.

Qirf2(1) {(τ2, τ1), δ|xt} = Q2

{
(τ2, τ1)|xδt

}
− Q2 {(τ2, τ1)|xt}

=

{
(B·2(τ2) + B·1(τ2)B·1(τ1))δ p > 1

B·1(τ2)B·1(τ1))δ p = 1
.

Note however that if we are interested in the two-periods ahead forecast, this
may not depend on the implicit quantile used for the one-step forecast. As such
we could integrate out τ1 by using τ1 ∼ U(0, 1)m. Then define

Qirf2(τ , δ|xt) = Q2(τ |xδt )− Q2(τ |xt)

=

{
(B·2(τ ) + B·1(τ )B̄·1)δ p > 1

B·1(τ )B̄·1δ p = 1
.
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Impulse response functions

This procedure above can be generalized for h-periods ahead IRFs, by defining

Qirfh(h−1,...,1) {(τh, τh−1, ..., τ1), δ|xt}

= Qh

{
(τh, τh−1, ..., τ1)|xδt

}
− Qh {(τh, τh−1, ..., τ1)|xt} ,

for a given path of multivariate quantiles (τh, τh−1, ..., τ1) and shock δ at time
t.

Qirfh(τ , δ|xt) = Qh(τ |xδt )− Qh(τ |xt),

when we integrate out the previous periods that were constructed by iterations.
(This is different from the mean-based VAR analysis. In this case, by using the
iterated expectations property, the effect on h periods ahead is the result of the
conditional expectations in the previous periods.)

In the long run the QIRF for h→∞ becomes 0 for stationary models.

Montes-Rojas Multivariate quantile impulse response functions



Motivation and contribution
Model

Empirical application

VARQ
Forecasting
Impulse response functions

Impulse response functions - local projections

A robust model for constructing IRFs is based on Jordà (2005) local projections
method. The central idea consists in estimating local projections at each period
of interest (i.e., t + h) rather than extrapolating into increasingly distant
horizons from a given model, as it is done with VAR.

The advantages of local projections are numerous:

1 they can be estimated by simple regression techniques;
2 they are more robust to misspecification;
3 joint or point-wise analytic inference is simple;
4 they easily accommodate experimentation with highly nonlinear and exible

specications that may be impractical in a multivariate context.
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Impulse response functions - local projections

This framework can be easily implemented in a VARQ context by a modeling
the VDQ model of Yt+h at each horizon h = 1, 2, . . . given all the information
available at t, that is, all the lags of the endogenous variables up to t (plus
exogenous variables if any)

Q lp
h (τ |xt) := QYt+h

(τ |xt) = Bh(τ )xt + Ah(τ ).

Note that in this case we require to solve a different set of coefficients for each
horizon h, which in fact involves directional QR models involving regressing
Yj,t+h on Y−j,t+h and xt , for j = 1, . . . ,m.

Then we could construct the QIRFs as

Qirf lph (τ , δ|xt) = Q lp
h (τ |xδt )− Q lp

h (τ |xt).

While this is an important alternative for prediction, it does not allow us to
study quantile paths. That is, intermediate realizations of the random variables,
i.e., for h − 1, h − 2, . . . , 1, are implicitly evaluated at the mean-based values.

Montes-Rojas Multivariate quantile impulse response functions



Motivation and contribution
Model

Empirical application
Effect on monetary shock in the U.S.

Effect of monetary policy

We estimate a three-variable (output gap, inflation, Fed Funds rate) VAR(1)
model using U.S. quarterly data from 1980q1 to 2010q1 (121 quarters). This
simple framework corresponds to the three-variable framework of New
Keynesian model rational expectations model of Cho and Moreno (2004, 2006)
and Jordà (2005), among others.

The output gap is generated by the first-difference of the Hodrick-Prescott
linear filter with linear trend, using the logarithm of the Gross National Product,
1996 constant prices (source: Federal Reserve Bank of St. Louis), denoted yt .

The inflation rate is the log first-difference of the GDP deflator, seasonally
adjusted (source: Federal Reserve Bank of St. Louis), denoted πt .

The Fed Funds rate is the monetary policy instrument (source: Board of
Governors of the Federal Reserve System), denoted rt , and corresponds to the
first-difference of the 3-months Treasury Bill rate (end of the quarter). The
reason we use the first-difference of the interest rate is that over the period of
analysis it shows a negative trend and we cannot reject it has a unit root.

For this case then Yt = (yt , πt , rt).
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Effect of monetary policy

We follow the Cholesky identification procedure in Christiano, Eichenbaum, and
Evans (1996), using the residuals from a VAR model where we assume the
standard ordering:
- r has no contemporaneous effect on y and π;
- π has an effect on r but not on y ; and
- y affects both π and r . This implies that shocks to the Fed Funds rate has no
contemporaneous effect on the other economic variables.

Then we evaluate the effect of a shock in r , calculated as the standard deviation
of this structural shock, on output gap and inflation (also standardized by the
standard deviation of their corresponding structural shocks).
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Figure: Series 1980q1-2010q1
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Table: Summary statistics for the series 1980q1-2010q1

Variable Obs Mean Std. Dev. Min Max
y 121 -0.00034663 0.0072249 -0.0281541 0.0158011
π 121 0.0072152 0.0047343 -.0016704 0.0272542
r 121 -0.00962 0.0093464 -0.0514 0.0356

Correlations (yt , πt , rt)
Variable yt πt rt

yt 1.0000
πt -0.1068 1.0000
rt 0.3831 0.1275 1.0000

Correlations (yt , πt , rt) mean-based VAR residuals
Variable yt πt rt

yt 1.0000
πt -0.0023 1.0000
rt 0.3329 0.0593 1.0000
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Figure: VARQ coefficients for τy ∈ {0.05, 0.10, . . . , 0.95},
τπ ∈ {0.05, 0.10, . . . , 0.95} and τr = 0.50
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Notes: Vertical and horizontal lines correspond to the mean-based VAR effects.
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Table: VAR system stability - Modulus of eigenvalues of B(τ )

Model eigen 1 eigen 2 eigen 3
VAR − OLS 0.853 0.152 0.067

VARQ(τy = 0.5, τπ = 0.1, τr = 0.5) 0.669 0.131 0.131
VARQ(τy = 0.1, τπ = 0.5, τr = 0.5) 0.813 0.535 0.054
VARQ(τy = 0.5, τπ = 0.5, τr = 0.5) 0.818 0.145 0.145
VARQ(τy = 0.5, τπ = 0.9, τr = 0.5) 0.984 0.153 0.153
VARQ(τy = 0.9, τπ = 0.5, τr = 0.5) 0.820 0.285 0.058
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Output gap Inflation
QIRF
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Notes: QIRF on output gap and inflation of a std.dev. shock in rt for τy ∈ {0.10, 0.50, 0.90}, τπ = 0.50 and
τr = 0.50.
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Output gap Inflation
QIRF
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Notes: QIRF on output gap and inflation of a std.dev. shock in rt for τp ∈ {0.10, 0.50, 0.90}, τy = 0.50 and
τr = 0.50.
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Further research ideas

The model can be extended to nonlinear QR models. Fix point solution to a
nonlinear system.

Multivariate density forecasting. Consider a grid of G m-quantile indexes
{τ1, . . . , τG}, then {QYt (τ1|Xt−1), . . . ,QYt (τG |Xt−1)} can be used to
construct {fYt (τ1|Xt−1), . . . , fYt (τG |Xt−1)} density points for f : Y → R.

Structural VARQ. Cholesky decomposition or other identification strategies for
different quantile indexes.

Quantile path analysis as an alternative to structural breaks.
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