Forecasting inflation with twitter

J. Daniel Aromí ^{1,3} Martín Llada ^{1, 2}

¹ IIEP-Baires (UBA-Conicet) ²FCE

³Universidad Católica Argentina

December 6, 2019

Overview

- Motivation
- 2 Data & methodology
- 3 In-sample Forecast
- 4 Out-of-sample Forecast
- Extended Analysis
- 6 Conclusions

Motivation: Inflation as an emergent process

The general price level evolves in a context of:

- Nominal arbitrariness/indeterminacy.
 (Ascari&Ropele 2009, Lubik&Schorfheide 2004, Beyer&Farmer 2004)
- Forward-looking adaptive behavior.
 (Heymann&Leijonhufvud 1995, Arifovic 1995, De Grauwe&Ji 2019)
- Variable policy regimes.
 (Ascari&Ropele 2009, McCallum 2001, Cukierman&Meltzer 1986, Hommes&Lustenhouwer 2019)

Hence....

- **Traditional indicators** (interest rates, monetary aggregates, fiscal deficits, ...) might miss relevant aspects.
- Potential gains linked to proxies of subjective states.

Motivation

This work:

Social media content as an indicator of **unobservable states/factors** controlling the evolution of inflation in Argentina (2012-2019).

Specific evaluations:

- Does social media contain valuable information regarding the evolution of inflation?
- How does the performance of the resulting index compare with other proxies of subjective states? (Google trends, surveys, newspaper content, mass media tweets)

Data & methodology

Twitter Data:

- 2012-2019: Approx. 70 million tweets.
- ullet Sample Stream (representative 1%) + web-scrapped tweets (for selected months).
- Argentine tweets identified by user self-reported location.

Simple indicators of Twitter content:

• Level of attention:

$$I_t = \frac{\# \ mentions \ of \ "inflation"}{\# \ of \ tweets}$$

Relative level of attention:

$$\hat{I}_t = I_t - \frac{\sum_{k=1}^{12} I_{t-k}}{12}$$

Inflation rate and Indicator of Attention based on Twitter

Descriptive statistics

Variable	Mean	Median	St. Dev.	Q1	Q3	Minimum	Maximum
∆ ipc	0.02	0.02	0.01	0.02	0.03	0.00	0.06
∆ tcn	0.03	0.01	0.05	0.01	0.03	-0.04	0.25
#Tweets	690424.46	677686.00	281433.58	450239.00	929539.00	110712.00	1392608.00
Mentions of "inflation"	209.39	151.00	153.42	102.00	302.00	24.00	739.00
$I_t \ (\times 10^4)$	3.15	2.58	1.91	1.71	4.18	0.81	9.75

Sample period is 2012-2019. Data frequency is monthly.

Results: In-sample Forecasts

			∆ip	c_{t+1}		
\triangle ipc _t	0.008*** (0.001)	0.006*** (0.0004)	0.006*** (0.001)	0.006*** (0.001)	0.005*** (0.001)	0.006*** (0.0004)
△ tcn		0.003*** (0.001)			0.002*** (0.001)	0.002*** (0.001)
It			0.004*** (0.001)		0.004*** (0.001)	
\hat{l}_t				0.004*** (0.001)		0.003*** (0.001)
Constant	0.025*** (0.001)	0.025*** (0.001)	0.025*** (0.001)	0.025*** (0.001)	0.025*** (0.001)	0.025*** (0.001)
Observations R ² Adjusted R ² F Statistic	92 0.433 0.427 68.678***	92 0.495 0.483 43.580***	92 0.531 0.520 50.305***	80 0.516 0.504 41.095***	92 0.560 0.545 37.360***	80 0.539 0.521 29.614***

Note: standard errors are estimated following Newey & West (1987, 1994).* p < 0.1; *** p < 0.05; **** p < 0.01

Other proxies of subjective states

$$\triangle ipc_{t+1} = \alpha + \beta_0 \triangle ipc_t + \beta_{ind}ind_t + u_t$$

	Baseline	I_t	GT-inflation	GT-dollar	Newspaper	Mass media tweets	Cons. Surv.
â	0.025*** (0.001)	0.025*** (0.001)	0.025*** (0.001)	0.024*** (0.001)	0.025*** (0.001)	0.024*** (0.001)	0.025*** (0.001)
\hat{eta}_0	0.008*** (0.001)	0.005*** (0.001)	0.006*** (0.001)	0.005*** (0.001)	0.007*** (0.001)	0.007*** (0.001)	0.007*** (0.001)
$\hat{eta_{ind}}$		0.004*** (0.001)	0.002** (0.001)	0.004*** (0.001)	-0.001 (0.001)	0.000 (0.001)	-0.000 (0.001)
Adj. R ²	0.427	0.511	0.451	0.494	0.428	0.410	0.414

Note: standard errors are estimated following Newey & West (1987, 1994).*p<0.1; ***p<0.05; ****p<0.01

Out-of-sample Forecast

Methodology:

• Baseline autoregressive model:

$$\triangle ipc_{t+1} = \alpha + \beta_0 \triangle ipc_t + u_t$$

• Evaluated model:

$$\triangle ipc_{t+1} = \alpha + \beta_0 \triangle ipc_t + \beta_{ind}ind_t + u_t.$$

Where $ind_t \in \{I_t, \hat{I}_t, \hat{I}_t^+, \triangle tcn_t\}$.

• Gains in forecast accuracy: ratio of model RMSE vs baseline RMSE.

Details:

- Expanding window for training dataset.
- ullet First forecast exercise with 60% and 80% of the sample in the training dataset.
- Statistical inference using bootstrap methodology (Faust et al. 2013).

Results: Out of sample forecasts

Forecasts begin	pegin 11/2016 (60%)		04/2018 (80%)		
	RMSE	Ratio	RMSE	Ratio	
Baseline	0.0099		0.0125		
\triangle tcn_t	0.0093	0.93 [0.07]	0.0114	0.91 [0.06]	
I_{t}	0.0091	0.91 [0.03]	0.0104	0.83 [0.01]	
\hat{l}_t	0.0094	0.94 [0.11]	0.0112	0.90 [0.04]	
\hat{I}_t^+	0.0090	0.90 [0.03]	0.0101	0.81 [0.01]	
Forecast combination	0.0089	0.89 [0.01]	0.0106	0.84 [0.01]	

Note: Forecast combination is implemented through simple averages. p-values in brackets.

Professional Forecasters: Central Bank survey (REM)

- Comparing performance of model vs. expert forecasts.
- Evaluating complementarities between model & expert forecasts.

RMSE

Forecasts begin	11/2016 (60%)	04/2018 (80%)
REM	0.0080	0.0102
Without twitter content		
Model forecast	0.0095	0.0117
Forecast combination (REM $+$ Model)	0.0081	0.0103
With twitter content		
	0.0000	0.0100
Model forecast	0.0089	0.0106
Forecast combination (REM+Model)	0.0077	0.0096

Conclusions

Results:

- Twitter content provides valuable information regarding the evolution of inflation.
- The combination of traditional economic indicators and indices based on Twitter allows for gains in prediction accuracy.

Further research:

- NLP (Topic models, word embeddings)
- Network topology, communities, classification of users,...